Jumat, 07 Maret 2014

Aplikasi Integral: Luas Daerah Di Antara Kurva

Banyak hal yang ingin kita ketahui dapat dihitung dengan integral: luas daerah di antara kurva, volume dan luas permukaan bangun ruang, panjang kurva, jumlah kerja yang diperlukan oleh pipa air untuk mengangkat air dari bawah tanah, gaya pada jembatan penahan air, dan koordinat titik massa di mana suatu bangun ruang akan seimbang. Semua hal tersebut akan didefinisikan terlebih dulu sebagai limit dari jumlah Riemann suatu fungsi kontinu pada selang tutup dan kemudian menghitungnya dengan kalkulus.
Luas Daerah Di Antara Kurva: Rumus Dasar sebagai Limit dari Jumlah Riemann
Misalkan akan dicari luas daerah yang terletak di bawah kurva y = f(x), di atas kurva y = g(x), dan di kanan dan di kiri garis x = a dan x = b (Gambar 1 (i)). Daerah tersebut kebetulan memiliki bentuk yang tidak dapat dicari luasnya dengan menggunakan geometri, akan tetapi jika f dan g adalah sebarang fungsi kontinu, kita dapat mencari luasnya dengan menggunakan integral.
Untuk mencari luas daerah dengan menggunakan integral, pertama kita dekati bidang tersebut dengan n persegi panjang vertikal berdasarkan partisi P = {x0, x1, . . . , xn} dari selang [a, b] (Gambar 1 (ii)). Luas persegi panjang ke-k (Gambar 1 (iii)) adalah
ΔAk = panjang x lebar = [f(ck) – g(ck)xk.
Gambar 1
Kita kemudian mendekati luas daerah tersebut dengan menjumlahkan luas dari n persegi panjang.
Luas I
Fungsi f dan g adalah fungsi-fungsi yang kontinu, dengan mengambil limit ||P|| mendekati nol, diperoleh
Luas II
Definisi
Jika f dan g adalah fungsi-fungsi kontinu dengan f(x) ≥ g(x) pada selang [a, b], maka luas daerah di antara kurva y = f(x) dan y = g(x) dari a sampai b adalah integral [f(x) – g(x)] dari a sampai b:
Luas III
Untuk menggunakan persamaan yang ada di dalam definisi di atas, dilakukan langkah-langkah berikut:
  1. Gambar kurva-kurvanya dan gambar juga persegi panjangnya. Hal ini untuk menunjukkan yang mana kurva f (kurva atas) dan kurva g (kurva bawah). Hal ini juga dimaksudkan untuk mengetahui batas-batasnya, jika belum diketahui pada soal.
  2. Cari batas-batas integralnya.
  3. Tulis persamaan f(x) – g(x). Sederhanakan jika dapat.
  4. Integralkan [f(x) – g(x)] dari a sampai b. Hasil yang diperoleh merupakan luas daerah yang dimaksud.
Contoh: Cari luas daerah di antara y = cos x dan y = –sin x dari 0 sampai π/2.
Solusi
Langkah 1:
Sketsa kurva-kurva tersebut beserta persegi panjang vertikalnya (Gambar 2). Dari gambar diperoleh bahwa kurva atasnya adalah y = cos x, maka f(x) = cos x. Sedangkan kurva bawahnya adalah g(x) = –sin x, sehingga g(x) = –sin x.
Gambar 2
Langkah 2: Batas-batas integralnya sudah diberikan, yaitu a = 0 dan b = π/2.
Langkah 3: f(x) – g(x) = cos x – (–sin x) = cos x + sin x
Langkah 4:
Luas IV
Luas daerah yang diberikan adalah 2 satuan luas.

Semoga bermanfaat

0 komentar:

Posting Komentar

 
;