Contoh 1: Memodelkan Permasalahan Keuangan
Suatu perusahaan rumahan meminjam Rp 2.250.000.000,00 dari tiga bank yang berbeda untuk memperluas jangkauan bisnisnya. Suku bunga dari ketiga bank tersebut adalah 5%, 6%, dan 7 %. Tentukan berapa pinjaman perusahaan tersebut terhadap masing-masing bank jika bunga tahunan yang harus dibayar perusahaan tersebut adalah Rp 130.000.000,00 dan banyaknya uang yang dipinjam dengan bunga 5% sama dengan dua kali uang yang dipinjam dengan bunga 7%?
Pembahasan Misalkan x, y, dan z secara berturut-turut adalah banyaknya uang yang dipinjam dengan bunga 5%, 6%, dan 7%. Ini berarti yang menjadi persamaan pertama kita adalah x + y + z = 2.250 (dalam jutaan). Persamaan kedua diperoleh dari total bunga pertahunnya, yaitu Rp 130.000.000,00: 0,05x + 0,06y + 0,07z = 130. Sedangkan persamaan ketiga dapat diperoleh dari kalimat, “banyaknya uang yang dipinjam dengan bunga 5% sama dengan dua kali uang yang dipinjam dengan bunga 7%”, sehingga persamaannya adalah x = 2z. Ketiga persamaan tersebut membentuk sistem seperti berikut.
Suku-x pada persamaan pertama adalah 1. Apabila dituliskan kembali ke dalam bentuk standar, sistem tersebut akan menjadi
Gunakan –5P1 + P2 untuk mengeliminasi suku-x di P2, dan –P1 + P3 untuk mengeliminasi suku-x di P3.
Sehingga, P2 yang baru adalah y + 2z = 1.750 dan P3 yang baru adalah y + 3z = 2.250 (setelah dikalian dengan –1), yang menghasilkan sistem berikut.
Dengan menyelesaikan subsistem 2 × 2 (dua persamaan terakhir) menggunakan –P2 + P3 menghasilkan z = 500. Selanjutnya dengan menerapkan substitusi balik akan menghasilkan x = 1.000 dan y = 750. Diperoleh selesaian SPLTV tersebut adalah (1.000, 750, 500). Ini berarti bahwa perusahaan tersebut meminjam 1 miliar rupiah pada bunga 5%, 750 juta rupiah pada bunga 6%, dan 500 juta rupiah pada bunga 7%.
0 komentar:
Posting Komentar